
ACHIEVING HIGH SUSTAINED PERFORMANCE IN AN UNSTRUCTURED MESH
CFD APPLICATION

W.K. ANDERSON∗, W.D. GROPP† , D.K. KAUSHIK‡ , D.E. KEYES§ , AND B.F. SMITH¶

Abstract. This paper highlights a three-year project by an interdisciplinary team on a legacy F77
computational fluid dynamics code, with the aim of demonstrating that implicit unstructured grid simulations
can execute at rates not far from those of explicit structured grid codes, provided attention is paid to
data motion complexity and the reuse of data positioned at the levels of the memory hierarchy closest
to the processor, in addition to traditional operation count complexity. The demonstration code is from
NASA and the enabling parallel hardware and (freely available) software toolkit are from DOE, but the
resulting methodology should be broadly applicable, and the hardware limitations exposed should allow
programmers and vendors of parallel platforms to focus with greater encouragement on sparse codes with
indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree
of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-
processor nodes of Sandia’s “ASCI Red” Intel machine, corresponding to a sustained floating-point rate of
0.227 Tflop/s.

Key words. high-performance computing, parallel implicit solvers, computational aerodynamics, memory-
centric computation

Subject classification. Computer Science

1. Overview. Many applications of economic and national security importance require the solution of
nonlinear partial differential equations (PDEs). In many cases, PDEs possess a wide range of time scales—
some (e.g., acoustic) faster than the phenomena of prime interest (e.g., convective), suggesting the need
for implicit methods. In addition, many applications are geometrically complex and possess a wide range
of length scales. Unstructured meshes are often employed in such cases to accomplish mesh generation
and adaptation (almost) automatically and to resolve the PDE without requiring an excessive number
of mesh points. The best algorithms for solving nonlinear implicit problems are often Newton methods,
which themselves require the solution of very large, sparse linear systems. The best algorithms for these
sparse linear problems, particularly at very large sizes, are often preconditioned iterative methods. This

∗Fluid Mechanics and Acoustics Division, NASA Langley Research Center, Hampton, VA 23682,

w.k.anderson@larc.nasa.gov.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, gropp@mcs.anl.gov. This

work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 and Computer Science

Department, Old Dominion University, Norfolk, VA 23529, kaushik@cs.odu.edu. This work was supported by a GAANN

Fellowship from the U.S. Department of Education and by Argonne National Laboratory under Contract 983572401.
§Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529, ISCR, Lawrence Livermore National

Laboratory, Livermore, CA 94551, and ICASE, NASA Langley Research Center, Hampton, VA 23681, keyes@icase.edu. This

work was supported by the National Science Foundation under Grant ECS-9527169, by NASA under Contract Nos. NAS1-97046

and NAS1-19480 (while the author was in residence at ICASE), by Argonne National Laboratory under Contract 982232402,

and by Lawrence Livermore National Laboratory under Subcontract B347882.
¶Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, bsmith@mcs.anl.gov. This

work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

1

nested hierarchy of tunable algorithms has proved effective in solving complex problems in areas such as
aerodynamics, combustion, radiation transport, and global circulation. Typically, for steady-state solutions
from a trivial initial guess, the number of “work units” (evaluations of the discrete residuals on the finest
mesh on which the problem is represented) is around 103 (to achieve reductions in the norm of the residual
of 10−8 to 10−12). Although these algorithms are efficient (in the sense of using relatively few floating-point
operations to arrive at the final result), they do not necessarily achieve the absolute flops-per-second (flop/s)
ratings that less efficient or less versatile algorithms may [3].

Our submission focuses on the time to solution rather than the achieved floating-point performance as
the figure of merit. We have achieved a performance of 15 microseconds per degree of freedom on a mesh
with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red, and 36 microseconds per degree
of freedom on 1024 processors of an SGI/Cray T3E. These figures correspond to sustained floating-point
rates of 227 Gflop/s and 76 Gflop/s, respectively. The code is also nearly scalable, showing linear scaling in
computation rate between 128 and 3072 nodes for a fixed-size problem, and only a modest degradation in
algebraic convergence rate over the same range.

The code spends almost all of its time in two phases: flux computations (to evaluate conservation law
residuals) and sparse linear algebraic kernels. The linear algebraic kernels run at close to the aggregate
memory-bandwidth limit on performance (as determined by the STREAM benchmarks [15]), and the flux
computations are bounded either by memory bandwidth or instruction scheduling (see the analysis in [8]).
This level of performance (in excess of 100 Gflop/s) is well above what is commonly considered achievable
for sparse-matrix and unstructured mesh computations and requires a combination of scalable algorithms
and data structure optimizations, as well as powerful, tightly networked computers. See, for example, the
comments by the “High End Crusader” [6, 7], who has called for a benchmark to focus attention on the
difficulty of sparse, unstructured problems.

As a bonus, our message-passing code relies on no special architectural features or proprietary com-
piler licenses, but is based on the MPI standard, allowing the application to take advantage of continuing
improvements in hardware performance without further software development.

2. The Application. The application code, FUN3D, is a tetrahedral vertex-centered unstructured
mesh code developed by W. K. Anderson of the NASA Langley Research Center for compressible and
incompressible Euler and Navier-Stokes equations [1, 2]. FUN3D uses a control volume discretization with
variable-order Roe schemes for approximating the convective fluxes and a Galerkin discretization for the
viscous terms. FUN3D is being used for design optimization of airplanes, automobiles, and submarines, with
irregular meshes comprising several million mesh points. The optimization loop involves many analysis cycles.
Thus, reaching the steady-state solution in each analysis cycle in a reasonable amount of time is crucial to
conducting the design optimization. From the beginning, our effort has been focused on minimizing the time
to convergence without compromising scalability, by means of appropriate algorithms and architecturally
efficient data structures.

We have ported FUN3D into PETSc framework and tuned it for good cache performance and distributed
parallel systems, using the single program multiple data (SPMD) programming model. This new variant
(PETSc-FUN3D) is being used to run Navier-Stokes applications with the Spalart-Almaras turbulence model
[17] on modest-sized problems, and we expect to scale up these more phenomenologically complex problems
in coming months, while also beginning to cope with parallelization of the preprocessing.

Thus far, our large-scale parallel experience with PETSc-FUN3D is with the compressible or incom-
pressible Euler subset, but nothing in the solution algorithms or software changes with additional physical

2

phenomenology. Of course, the convergence rate will vary with conditioning, as determined by Mach and
Reynolds numbers and the correspondingly induced mesh adaptivity. Furthermore, robustness becomes more
of an issue in problems admitting shocks or using turbulence models. The lack of nonlinear robustness is a
fact of life that is largely outside of the domain of parallel scalability. In fact, when nonlinear robustness
is restored in the usual manner, through pseudo-transient continuation, the conditioning of the linear in-
ner iterations is enhanced, and parallel scalability may be improved. In some sense, the Euler code, with
its smaller number of flops per point per iteration, and its aggressive pseudotransient buildup toward the
steady-state limit, may be a more, not less, severe test of parallel performance.

3. Algorithms and Data Structures. Achieving high sustained performance, in terms of solutions
per second, involves three aspects. The first is a scalable algorithm in the sense of convergence rate. The
second is good per-processor performance on contemporary cache-based microprocessors. The third is a
scalable implementation, in the sense of time per iteration as the number of processors increases. Our
nonlinear method, pseudo-transient Newton-Krylov-Schwarz (ΨNKS), is an efficient algorithm, as the chart
of nonlinear iterations in Figure 5.1 shows. The per-processor performance is also quite good; in fact, it is
close to the memory-bandwidth limit (a more realistic measure of achievable performance than peak floating-
point for sparse problems [8]). Moreover, on any architecture with a sufficiently rich interconnection network,
ΨNKS leads to good per-iteration scalability, as argued from a simple analytical model in [14].

3.1. ΨNKS Solver. Our implicit algorithmic framework for advancing toward an assumed steady
state, f(u) = 0, has the form (1

∆t`)u` + f(u`) = (1
∆t`)u`−1, where ∆t` → ∞ as ` → ∞, u represents the fully

coupled vector of unknowns, and f(u) is the vector of nonlinear conservation laws.

Each member of the sequence of nonlinear problems, ` = 1, 2, . . ., is solved with an inexact Newton
method. The resulting Jacobian systems for the Newton corrections are solved with a Krylov method, relying
directly only on matrix-free operations. The Krylov method needs to be preconditioned for acceptable inner
iteration convergence rates, and the preconditioning can be the “make-or-break” feature of an implicit code.
A good preconditioner saves time and space by permitting fewer iterations in the Krylov loop and smaller
storage for the Krylov subspace. An additive Schwarz preconditioner [5] accomplishes this in a concurrent,
localized manner, with an approximate solve in each subdomain of a partitioning of the global PDE domain.
The coefficients for the preconditioning operator are derived from a lower-order, sparser, and more diffusive
discretization than that used for f(u), itself. Applying any preconditioner in an additive Schwarz manner
tends to increase flop rates over the same preconditioner applied globally, since the smaller subdomain blocks
maintain better cache residency, even apart from concurrency considerations [18]. Combining a Schwarz
preconditioner with a Krylov iteration method inside an inexact Newton method leads to a synergistic,
parallelizable nonlinear boundary value problem solver with a classical name: Newton-Krylov-Schwarz (NKS)
[9]. We combine NKS with pseudo-timestepping [13] and use the shorthand ΨNKS to describe the algorithm.

To implement this algorithm in FUN3D, we employ the PETSc package [4], which features distributed
data structures—index sets, vectors, and matrices—as fundamental objects. Iterative linear and nonlinear
solvers are implemented within PETSc in a data structure-neutral manner, providing a uniform application
programmer interface. Portability is achieved in PETSc through MPI, but message-passing detail is not
required in the application. We use MeTiS [10] to partition the unstructured mesh.

3.2. Memory-Centric Computation. We view a PDE computation predominantly as a mix of loads
and stores with embedded floating-point operations (flops). Since flops are cheap relative to memory refer-
ences, we concentrate on minimizing the memory references and emphasize strong sequential performance as

3

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Fig. 3.1. The effect of cache optimizations on the average execution time for one nonlinear iteration. BASE denotes the

case without any optimizations, and NOER denotes no edge reordering. The performance improves by a factor of about 2.5

on the Pentium and 7.5 on the IBM SP. The processor details are: 120 MHz IBM SP (P2SC “thin”, 128 KB L1), 250 MHz

Origin 2000 (R10000, 32 KB L1, and 4 MB L2), 400 MHz Pentium II (running Windows NT 4.0, 16 KB L1, and 512 KB

L2).

one of the factors needed for aggregate performance worthy of the theoretical peak of a parallel machine. We
use interlacing (creating spatial locality for the data items needed successively in time), structural blocking
for a multicomponent system of PDEs (cutting the number of integer loads significantly, and enhancing
reuse of data items in registers), and vertex and edge reorderings (increasing the level of temporal locality).
Applying these techniques required whole-program transformations of certain loops of the original vector-
oriented FUN3D, but raised the per-processor performance by a factor of between 2.5 and 7.5 (Figure 3.1),
depending on the microprocessor and optimizing compiler [12].

The importance of memory bandwidth to the overall performance is suggested by the single-processor
performance of PETSc-FUN3D shown in Figure 3.2. The performance of PETSc-FUN3D is compared to the
peak performance and the result of the STREAM benchmark [15] which measures achievable performance
for memory bandwidth-limited computations. These comparisons show that the STREAM results are much
better indicators of realized performance than the peak numbers. The parts of the code that are memory
bandwidth-limited (like the sparse triangular matrix solution phase, which is responsible for 25% of the overall
execution time) are bound to show poor performance, as compared to dense matrix-matrix operations, which
often come within 10–20% of peak. Even parts of the code that are not memory intensive often achieve much
less than peak performance because of the limits on the number of basic operations that can be performed
in a single clock cycle [8]. This is true for the flux calculation routine in PETSc-FUN3D, which consumes
over 50% of the overall execution time. Instruction scheduling limits the performance to 47% of the peak on
250 MHz SGI Origin 2000 even under a perfect memory system (leading to an estimate of 235 Mflops/s),
which is close to the value of 209 Mflops/s experimentally measured by the Origin’s hardware counters.

The basic philosophy of any efficient parallel computation is “owner computes,” with message merging
and overlapping communication with computation where possible via split transactions. Each processor
“ghosts” its stencil dependencies on its neighbors’ data. Grid functions are mapped from a global (user)

4

0

100

200

300

400

500

600

700

800

900

SP O r ig in T3E

P eak M flops/s Stream Tr iad M flops/s O bserved M flops/s

Fig. 3.2. Sequential performance of PETSc-FUN3D for a coarse mesh of 22,677 vertices (with 4 unknowns per vertex).

The processor details for IBM SP and Origin 2000 are the same as in Figure 3.1. The SGI/Cray T3E is based on a 450 MHz

DEC Alpha 21164 with 8 KB L1 cache and 96 KB unified L2 cache.

ordering into contiguous local orderings (which, in unstructured cases, are designed to maximize spatial
locality for cache line reuse). Scatter/gather operations are created between local sequential vectors and
global distributed vectors, based on runtime-deduced connectivity patterns.

4. Measuring the Parallel Performance. We use PETSc’s profiling and logging features to measure
the parallel performance. PETSc logs many different types of events and provides valuable information about
time spent, communications, load balance, and so forth, for each logged event. PETSc uses manual counting
of flops, which are afterwards aggregated over all the processors for parallel performance statistics. We
have observed that the flops reported by PETSc are close to (within 10 percent of) the values statistically
measured by hardware counters on R10000 processor.

PETSc uses the best timers available in each processing environment. In our rate computations, we
exclude the initialization time devoted to I/O and data partitioning. To suppress timing variations caused
by paging in the executable from disk, we preload the code into memory with one nonlinear iteration, then
flush, reload the initial iterate, and begin performance measurements.

Since we are solving large fixed-size problems on distributed memory machines, it is not reasonable to
base parallel scalability on a uniprocessor run, which would thrash the paging system. Our base processor
number is such that the problem has just fit into the local memory. We have employed smaller sequential
cases to optimize cached data reuse [11, 12] to minimize the execution time. In the results below, we
decompose the parallel efficiency into two factors: algorithmic efficiency, measuring the effect of increased
granularity on the number of iterations to convergence, and implementation efficiency, measuring the effect
of increased granularity on per-iteration performance.

5. Scalability Studies. We present three aspects of scalability in this section. Throughout we use
unstructured tetrahedral meshes of the standard Onera M6 wing closed with a symmetry plane inboard,
prepared for us by colleagues at the NASA Langley Research Center. On the two machines with the finest
granularity available to us to date, a Cray T3E with 1024 600 MHz Alpha processors and a partition of

5

ASCI Red with 3072 333 MHz Pentium Pro dual-processor nodes, we show several metrics of fixed-size
scalability on our finest mesh. On machines representative of the two ASCI Blue machines (an IBM SP and
an SGI Origin) and on a T3E with 450 MHz processors, we compare executions of the same code on an
intermediate fixed-size problem on up to 80 processors (the maximum available on our SP configuration).
Finally, to convey some idea of the sensitivity of the Newton method to the severity of the nonlinearity, and
of the sensitivity of the preconditioned Krylov solver with respect to different conditioning inherited from
different Mach numbers of the simulation, we present some comparisons across Mach number (incompressible
to supersonic). This study also gives an indication of the sensitivity of the floating point performance to the
blocksize of the unknown vector, which is four in the incompressible case and five in the compressible cases.

5.1. Parallel Scalability on the T3E. The parallel scalability of PETSc-FUN3D is shown in Fig-
ure 5.1 for a mesh with 2.8 million vertices running on up to 1024 Cray T3E processors. We see that the
implementation efficiency of parallelization (i.e., the efficiency on a per-iteration basis) is 82 percent in going
from 128 to 1024 processors. The number of iterations is also fairly flat over the same eightfold range of
processor number (rising from 37 to 42), reflecting reasonable algorithmic scalability. This is much less
serious degradation than predicted by the linear elliptic theory (see [16]); pseudo-timestepping—required by
the nonlinearity—is responsible. The overall efficiency is the product of the implementation efficiency and
the algorithmic efficiency. The Mflop/s per processor are also close to flat over this range, even though the
relevant working sets in each subdomain vary by nearly a factor of eight. This emphasizes the requirement
of good serial performance for good parallel performance.

5.2. Parallel Scalability on ASCI Red. The same fixed-size problem is run on large ASCI Red
configurations with sample scaling results shown in Figure 5.2. The implementation efficiency is 94% in
going from 256 to 2048 nodes (and 95% in going from 128 to 2048 nodes, due to slightly worse cache
performance in the 128-node run). For the data in Figure 5.2, we employed the -procs 1 runtime option on
ASCI Red, which dedicates a communication processor to every execution processor. The -procs 2 runtime
option enables 2-processor-per-node multithreading during threadsafe, communication-free portions of the
code. We have activated this feature for the floating-point-intensive flux computation subroutine alone. On
2048 nodes, the resulting Gflop/s rate is 156, or 30% greater than for the single-threaded case on the same
number of nodes. On 3072 nodes, the largest run we have been able to make on the unclassified side of the
machine to date, the resulting GFlop/s rate is 227. Undoubtedly, further improvements to the algebraic
solver portion of the code are also possible through multithreading, but the additional coding work does not
seem justified at present.

5.3. Parallel Scalability across Architectures. Cross-platform performance comparisons of a medium-
size wing problem over a common set of processor numbers are given in Table 1, which lists overall efficiencies.
The 16-processor run has approximately 22,369 vertices per processor; the 80-processor run has approxi-
mately 4,473. Decreasing volume-to-surface ratios in the subdomains and increasing depth of the global
reduction spanning tree of the processors lead to gradually decaying efficiency. The convergence rate, in
terms of pseudo-time steps to achieve a relative reduction of steady-state residual norm of 10−12, degrades
only slowly with increased partitioning. Exactly one Newton iteration is performed on each pseudo-time
step, and the Krylov space restart size is 30, with a maximum of one restart. The slight differences in the
numbers of timesteps arise from slightly different floating point arithmetic and/or noncommutative sum-
mation of global inner products, which lead to slightly different trajectories to the same steady state. The
Origin is the fastest per processor (achieving the highest percentage of peak sequentially). The T3E has the

6

128 256 384 512 640 768 896 1024
0

0.5

1

1.5

2

2.5x 10
4

Avg. Vertices per Proc.

128 256 384 512 640 768 896 1024
0

500

1000

1500

2000

2500
Execution Time (s)

128 256 384 512 640 768 896 1024
0

0.2

0.4

0.6

0.8

1

1.2
Implementation Efficiency

128 256 384 512 640 768 896 1024
0

10

20

30

40

50
Nonlinear Iterations

128 256 384 512 640 768 896 1024
0

20

40

60

80

100
Mflop/s per Proc.

128 256 384 512 640 768 896 1024
0

20

40

60

80
Aggregate Gflop/s

Fig. 5.1. Parallel performance for a fixed size mesh of 2.8 million vertices run on up to 1024 Cray T3E 600 MHz Alpha

processors.

Table 5.1

Transonic flow over M6 wing; fixed-size mesh of 357,900 vertices.

No. Cray T3E IBM SP SGI Origin

Procs. Steps Time Eff. Steps Time Eff. Steps Time Eff.

16 55 2406s — 55 1920s — 55 1616s —

32 57 1331s .90 57 1100s .87 56 862s .94

48 57 912s .88 57 771s .83 56 618s .87

64 57 700s .86 56 587s .82 57 493s .82

80 57 577s .83 59 548s .70 57 420s .77

best scalability, due to its torus network, which is fast compared with sequential processor performance. The
full problem fits on smaller numbers of processors on the Origin, but “false” superunitary parallel scalability
results because of the cache thrashing when too many vertices are assigned to a processor; 5,000 to 20,000
vertices per processor is a reasonable load for this code.

7

256 512 768 1024 1280 1536 1792 2048
0

2000

4000

6000

8000

10000

12000

Avg. Vertices per Proc.

256 512 768 1024 1280 1536 1792 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Execution Time (s)

256 512 768 1024 1280 1536 1792 2048
0

0.2

0.4

0.6

0.8

1

1.2

Implementation Efficiency

256 512 768 1024 1280 1536 1792 2048
0

10

20

30

40

50

60

Nonlinear Iterations

256 512 768 1024 1280 1536 1792 2048
0

10

20

30

40

50

60

70

80

Mflop/s per Proc.

256 512 768 1024 1280 1536 1792 2048
0

50

100

150

Aggregate Gflop/s

Fig. 5.2. Parallel performance for a fixed size mesh of 2.8 million vertices run on up to 2048 ASCI Red 333 MHz Pentium

Pro processors.

A plot showing aggregate flop/s performance and a log-log plot showing execution time for our largest
case on the three most capable machines to which we have thus far had access are shown in Figures 5.3 and
5.4. In both figures, lines of unit slope (positive and negative, resp.) show the departure from optimality.
Note that although the ASCI Red flop/s rate scales nearly linearly, a higher fraction of the work is redundant
at higher parallel granularities, so the execution time does not drop in exact proportion to the increase in
flop/s.

5.4. Parallel Scalability across Flow Regimes. Trans-Mach convergence comparisons of the same
problem are given in Table 2. Here efficiencies are normalized by the number of timesteps, to factor con-
vergence degradation out of the performance picture and measure implementation factors alone (though
convergence degradation with increasing granularity is modest). The number of steps increases dramatically
with the nonlinearity of the flow, as Mach rises; however, the linear work per step decreases on average.
Reasons for this include smaller pseudo-timesteps in early nonlinear iterations and the increased hyperbol-
icity of the flow. The compressible Jacobian is far more complex to evaluate, but its larger blocks (5 × 5
instead of 4 × 4) concentrate locality, achieving much higher computational rates than the corresponding

8

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Asci Red

T3E

Asci Blue

Aggregate Gflop/s
vs. # nodes

Fig. 5.3. Fixed-size parallel scaling results: flop/s.

10
2

10
3

10
4

10
2

10
3

10
4

Asci Red

T3E

Asci Blue

Execution Time (s)
vs. # nodes

Fig. 5.4. Fixed-size parallel scaling results: execution time.

incompressible Jacobian.

6. Conclusion. High sustained scalable performance has been demonstrated on simulations that use
implicit algorithms of choice for unstructured PDEs. In the history of the peak performance Bell Prize
competition, PDE-based computations have led (or been part of leading entries containing multiple appli-
cations) in 1988, 1989, 1990, and 1996. All of these leading entries have been obtained on vector or SIMD
architectures, and all were based on structured meshes. The last (1996) and most impressive of these PDE-
based entries was executed on 160 vector nodes of the Japanese Numerical Wind Tunnel (NWT), and ran
at 111 Gflop/s. The 227 Gflop/s sustained performance of our unstructured application on a hierarchical
distributed memory multiprocessor in the SPMD programming style exceeds that of the 1996 entry by a

9

Table 5.2

Flow over M6 wing on SGI Origin; fixed-size mesh of 357,900 vertices (1,431,600 DOFs incompressible, 1,789,500 DOFs

compressible).

No. Time per Per-Step Impl. FcnEval JacEval

Procs. Steps Step Speedup Eff. Mflop/s Mflop/s

Incompressible (4 × 4 blocks)

16 19 41.6s — — 2,630 359

32 19 20.3s 2.05 1.02 5,366 736

48 21 14.1s 2.95 0.98 7,938 1,080

64 21 11.2s 3.71 0.93 10,545 1,398

80 21 10.1s 4.13 0.83 11,661 1,592

Subsonic (Mach 0.30) (5 × 5 blocks)

16 17 55.4s — — 2,002 2,698

32 19 29.8s 1.86 0.93 3,921 5,214

48 19 20.5s 2.71 0.90 5,879 7,770

64 20 14.3s 3.88 0.97 8,180 10,743

80 20 12.7s 4.36 0.87 9,452 12,485

Transonic (Mach 0.84) (5 × 5 blocks)

16 55 29.4s — — 2,009 2,736

32 56 15.4s 1.91 0.95 4,145 5,437

48 56 11.0s 2.66 0.89 5,942 7,961

64 57 8.7s 3.39 0.85 8,103 10,531

80 57 7.4s 3.99 0.80 9,856 12,774

Supersonic (Mach 1.20) (5 × 5 blocks)

16 80 19.2s — — 2,025 2,679

32 81 10.6s 1.81 0.90 3,906 5,275

48 81 7.1s 2.72 0.91 6,140 7,961

64 82 5.8s 3.31 0.83 7,957 10,398

80 80 4.6s 4.20 0.84 9,940 12,889

factor of two.

The achieved flop/s rate is less important to computational engineers than are solutions per minute of
discrete systems that are general enough to be employed in production design, as PETSc-FUN3D is now
employed. In addition, PETSc-FUN3D is a portable message-passing application that runs on a variety of
platforms with good efficiency, thus lowering the total cost of achieving high performance over the lifetime
of the application.

7. Acknowledgments. Computer time was supplied by Argonne National Laboratory, Lawrence Liv-
ermore National Laboratory, NERSC, Sandia National Laboratory, and SGI-Cray.

REFERENCES

[1] W. K. Anderson and D. L. Bonhaus, An implicit upwind algorithm for computing turbulent flows
on unstructured grids, Computers and Fluids, 23 (1994), pp. 1–21.

10

[2] W. K. Anderson, R. D. Rausch, and D. L. Bonhaus, Implicit/multigrid algorithms for incompress-
ible turbulent flows on unstructured grids, Journal of Computational Physics, 128 (1996), pp. 391–
408.

[3] D. F. Bailey, How to fool the masses when reporting results on parallel computers, Supercomputing
Review, (1991), pp. 54–55.

[4] S. Balay, W. Gropp, L. C. McInnes, and B. Smith, The Portable, Extensible,Toolkit for Scientific
Computing (PETSc) ver. 22. http://www.mcs.anl.gov/petsc/petsc.html, 1998.

[5] X. C. Cai, Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial
differential equations, Technical Report 461, Courant Institute, New York, 1989.

[6] H. E. Crusader, Peak performance versus bandwidth. HPCC Week, NOV 1998.
[7] , Towards a U.S. sparse-matrix policy. HPCC Week, DEC 1998.
[8] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, Toward realistic performance bounds

for implicit CFD codes, in Proceedings of Parallel CFD’99, A. Ecer et al., eds., Elsevier, 1999.
[9] W. D. Gropp, L. C. McInnes, M. D. Tidriri, and D. E. Keyes, Parallel implicit PDE computa-

tions, in Proceedings of Parallel CFD’97, A. Ecer et al., eds., Elsevier, 1997, pp. 333–344.
[10] G. Karypis and V. Kumar, A fast and high quality schema for partitioning irregular graphs, SIAM

J. Scientific Computing, 20 (1999), pp. 359–392.
[11] D. K. Kaushik, D. E. Keyes, and B. F. Smith, On the interaction of architecture and algorithm

in the domain-based parallelization of an unstructured grid incompressible flow code, in Proceedings
of the 10th International Conference on Domain Decomposition Methods, J. Mandel et al., eds.,
Wiley, 1997, pp. 311–319.

[12] , Newton-Krylov-Schwarz methods for aerodynamic problems: Compressible and incompressible
flows on unstructured grids, in Proceedings of the 11th International Conference on Domain Decom-
position Methods, C.-H. Lai et al., eds., Domain Decomposition Press, Bergen, 1999.

[13] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J.
Numerical Analysis, 35 (1998), pp. 508–523.

[14] D. E. Keyes, How scalable is domain decomposition in practice?, in Proceedings of the 11th Interna-
tional Conference on Domain Decomposition Methods, C.-H. Lai et al., eds., Domain Decomposition
Press, Bergen, 1999.

[15] J. D. McCalpin, STREAM: Sustainable memory bandwidth in high performance computers, tech.
report, University of Virginia, 1995. http://www.cs.virginia.edu/stream.

[16] B. F. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition, Cambridge University Press,
1996.

[17] P. R. Spalart and S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, La
Recherche Aerospatiale, 1 (1994), pp. 5–21.

[18] G. Wang and D. K. Tafti, Performance enhancements on microprocessors with hierarchical memory
systems for solving large sparse linear systems, Int. J. High Performance Computing Applications,
13 (1999), pp. 63–79.

11

